1.1 Introduction to Power Processing

Control is invariably required

High efficiency is essential

P_{loss} / P_{out}

A high-efficiency converter

A goal of current converter technology is to construct converters of small size and weight, which process substantial power at high efficiency

Devices available to the circuit designer

Devices available to the circuit designer

Signal processing: avoid magnetics

Devices available to the circuit designer

Power processing: avoid lossy elements

Power loss in an ideal switch

Switch closed: v(t) = 0

Switch open: i(t) = 0

In either event: p(t) = v(t) i(t) = 0

Ideal switch consumes zero power

A simple dc-dc converter example

Input source: 100V Output load: 50V, 10A, 500W How can this converter be realized?

Dissipative realization

Dissipative realization

Series pass regulator: transistor operates in active region

Use of a SPDT switch

The switch changes the dc voltage level

DC component of $v_s(t)$ = average value:

$$V_s = \frac{1}{T_s} \int_0^{T_s} v_s(t) dt = DV_g$$

Addition of low pass filter

Addition of (ideally lossless) *L*-*C* low-pass filter, for removal of switching harmonics:

- Choose filter cutoff frequency f_0 much smaller than switching frequency f_s
- This circuit is known as the "buck converter"

Addition of control system for regulation of output voltage

The boost converter

A single-phase inverter

"H-bridge"

Modulate switch duty cycles to obtain sinusoidal low-frequency component

1.2 Several applications of power electronics

Power levels encountered in high-efficiency converters

- less than 1 W in battery-operated portable equipment
- tens, hundreds, or thousands of watts in power supplies for computers or office equipment
- kW to MW in variable-speed motor drives
- 1000 MW in rectifiers and inverters for utility dc transmission lines

A laptop computer power supply system

Power system of an earth-orbiting spacecraft

An electric vehicle power and drive system

A standalone photovoltaic power system

The system constructed in ECEN 4517/5517 Power Electronics and Photovoltaic Systems Laboratory

1.3 Elements of power electronics

Power electronics incorporates concepts from the fields of analog circuits electronic devices control systems power systems magnetics electric machines numerical simulation

Part I. Converters in equilibrium

Inductor waveforms

Discontinuous conduction mode Transformer isolation Averaged equivalent circuit

Predicted efficiency

Switch realization: semiconductor devices

Part I. Converters in equilibrium

- 2. Principles of steady state converter analysis
- 3. Steady-state equivalent circuit modeling, losses, and efficiency
- 4. Switch realization
- 5. The discontinuous conduction mode
- 6. Converter circuits