MISELN-GEN-02

Franco Ferraris Marco Parvis

Generalità sulle Misure di Grandezze Fisiche

Prof. Franco Ferraris - Politecnico di Torino

- La stima delle incertezze nel procedimento di misurazione
 - -modello deterministico
 - -modello probabilistico
- La compatibilità delle misure

Torino, 28-May-02

1

MISELN-GEN-02

Franco Ferraris Marco Parvis

Testi consigliati

- Norma UNI 4546 Misure e Misurazioni; termini e definizioni fondamentali - Milano - 1984
- Norma UNI-CEI 9 Guida all'espressione dell'incertezza nella misurazione - Milano - 1997
- A. De Marchi, L. Lo Presti Incertezze di misura -CLUT - Torino - 1993
 - UNI: Ente Nazionale Italiano di Unificazione CEI: Comitato Elettrotecnico Italiano

Torino, 28-May-02

MISELN-GEN-02

Franco Ferraris Marco Parvis

L'incertezza

Ad ogni misura è sempre associata :

I'INCERTEZZA

che

- INDICA
 - quanto è significativa la misura (l'informazione) ottenuta
 - quale è l'accordo con i campioni ufficialmente riconosciuti
- DEVE essere valutata dallo sperimentatore
- DEVE essere sempre comunicata

Torino, 28-May-02

3

MISELN-GEN-02

Franco Ferraris Marco Parvis

L'incertezza

L'incertezza in una misurazione non può mai essere resa nulla, perché:

- La definizione del misurando
 - modello matematico
 - operazioni necessarie per la misurazione

non descrive completamente la realtà fisica (la definizione è sempre arricchibile)

Esempio: lunghezza di un elastico

Incertezza intrinseca del misurando

Torino, 28-May-02

Torino, 28-May-02

Franco Ferraris MISELN-GEN-02 Marco Parvis L'incertezza L'incertezza di una misurazione non può mai essere resa nulla, perché: • I dispositivi che realizzano materialmente il confronto sono affetti a loro volta da incertezze (dispositivi sempre raffinabili) - Diminuire l'incertezza significa aumentare il costo: incertezza nulla si avrebbe per costo infinito Incertezza strumentale Torino, 28-May-02 5

MISELN-GEN-02 L'incertezza L'incertezza di una misurazione non può mai essere resa nulla, perché: • I campioni che si utilizzano nel confronto sono affetti da incertezze (campioni sempre migliorabili) • I campioni possono non rappresentare il misurando così come è stato definito Incertezza strumentale del campione

Franco Ferraris

MISELN-GEN-02

Franco Ferraris Marco Parvis

L'incertezza

L'incertezza di una misurazione non può mai essere resa nulla, perché:

- Lo stato dei sistemi che interagiscono nella misurazione (sistema misurato, dispositivi, campione, ...)
 - non rappresenta completamente la realtà fisica (modello sempre arricchibile)
 - varia al variare delle condizioni al contorno (ambientali)

Torino, 28-May-02

7

MISELN-GEN-02

Franco Ferraris

L'incertezza

Stato di un sistema

Insieme dei valori assunti contemporaneamente dai parametri del sistema

Grandezza d'influenza

Grandezza, diversa dal misurando, pertinente ai sistemi che interagiscono nella misurazione, la cui variazione altera significativamente, agli effetti della misurazione, le caratteristiche dei sistemi stessi

Torino, 28-May-02

MISELN-GEN-02

Franco Ferraris Marco Parvis

Errore ed incertezza

- In una misurazione l'operatore esegue una stima del valore del misurando
- Il risultato non coincide con il valore del misurando a causa dell'imperfetta misurazione della grandezza
- Si ha dunque un errore (scarto, scostamento), originato da svariati contributi che sono
 - ignoti
 - inconoscibili

Torino, 28-May-02

9

MISELN-GEN-02

Franco Ferraris Marco Parvis

Correzioni

- L'effetto di alcuni scarti è però modellizzabile
 - conoscenze sul comportamento dei sistemi che intervengono nella misurazione
 - conoscenza dell'effetto delle grandezze di influenza
- Per questi errori si può correggere il risultato sulla base del modello (se la componente di errore è significativa)
 - Esempio: "errori" di consumo degli strumenti (carico strumentale)

Torino, 28-May-02

Torino, 28-May-02

Errore ed incertezza

• L'incertezza

• è una valutazione eseguita dall'operatore

- sulle cause che incidono
significativamente sull'informazione
fornita (la misura)

- fornisce l'informazione sulla stima dell'imperfetta conoscenza del valore del
misurando

Stima dell'incertezza

• La stima è eseguita sulla base di un modello:

- deterministico

- misurazione a lettura singola

- probabilistico

- misurazione a letture ripetute

Lettura

Rilevamento dell'indicazione di un dispositivo per misurazione da parte dell'osservatore umano o di un utilizzatore strumentale

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello deterministico

- Stima pessimistica del contributo delle varie cause di incertezza
- L'ampiezza della fascia di valori è tale da garantire che ("ragionevolmente") il valore del misurando sia compreso all'interno della fascia
- Ogni contributo di incertezza è stimato nelle condizioni peggiori
- Sono sommati i valori assoluti dei singoli contributi di incertezza

Torino, 28-May-02

13

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello deterministico

La fascia di valori è fornita indicando:

- estremi della fascia
 - Esempio: $I=[3,035 \div 3,043]$ A
- valore centrale e semiampiezza della fascia
 - in valore assoluto
 - Esempio: $I=[3,039 \pm 0,004]$ A
 - in valore **relativo** (al valore centrale)
 - Esempio: I=3,039 A \pm 0,13%
 - in valore ridotto (a un valore convenzionale)

Torino, 28-May-02

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico

- Modello più raffinato, che fornisce una stima più realistica
- E' il modello che dovrà essere usato in futuro nei **certificati ufficiali**
- La valutazione dell'incertezza fa riferimento a due strumenti matematici
 - Categoria A
 - Analisi statistica di serie di osservazioni
 - Categoria B
 - Mezzi diversi dall'analisi statistica

Torino, 28-May-02

15

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico Incertezze di categoria A

- La grandezza è considerata una variabile aleatoria
 - Riferimento alle conoscenze di base di Teoria della Probabilità:
 - funzione densità di probabilità, distribuzione di frequenza
 - valore sperato
 - varianza
 - livello di fiducia (confidenza)
 - gradi di libertà

Torino, 28-May-02

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico Incertezze di categoria A

- Sono considerate m osservazioni indipendenti n_k della grandezza q eseguite nelle stesse condizioni sperimentali
- La stima del valore sperato è la media aritmetica delle osservazioni

$$\overline{n} = \frac{1}{m} \sum_{k=1}^{m} n_k$$

Torino, 28-May-02

17

MISELN-GEN-02

Franco Ferraris

Modello probabilistico Incertezze di categoria A

 La varianza sperimentale s², stima della varianza σ² della distribuzione di probabilità, e' data da:

$$s^{2}(n_{k}) = \frac{1}{m-1} \sum_{k=1}^{m} \left(n_{k} - \bar{n}\right)^{2}$$

Torino, 28-May-02

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico Incertezze di categoria A

 La miglior stima della varianza della media sperimentale è data da:

$$s^2\left(\frac{-}{n}\right) = \frac{s^2(n_k)}{m}$$

 La sua radice quadrata è chiamata scarto tipo sperimentale della media e rappresenta l'incertezza tipo u

Torino, 28-May-02

19

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico

- Per le incertezze di categoria A sono dunque fornite:
 - la media aritmetica, come stima del valore sperato
 - l'incertezza tipo, come stima della radice della varianza della media
 - i gradi di libertà

Torino, 28-May-02

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico Incertezze di categoria B

- La grandezza NON è ottenuta con osservazioni ripetute, e la sua distribuzione è valutata "a priori" sulla base di:
 - dati di misurazioni precedenti
 - esperienza dell'operatore
 - specifiche tecniche del costruttore
 - dati forniti in certificati di taratura

–

• Dalla valutazione della distribuzione si deduce il valore sperato e l'incertezza tipo

Torino, 28-May-02

21

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico Incertezze di categoria B

Taratura

Procedimento che determina come i segnali d'uscita degli strumenti sono legati alle misure dei misurandi

i valori nominali dei campioni sono legati alle misure delle grandezze da essi riprodotte

Torino, 28-May-02

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico Incertezze di categoria B

Esempi

- L'incertezza è DICHIARATA (nel manuale del dispositivo) con un intervallo avente un livello di fiducia del 90, 95 o 99 per cento
- Si ipotizza una distribuzione normale
- Il valore sperato stimato è il valore dichiarato
- La stima dell'incertezza tipo si ottiene dividendo l'incertezza dichiarata rispettivamente per 1,64, 1,96 o 2,58

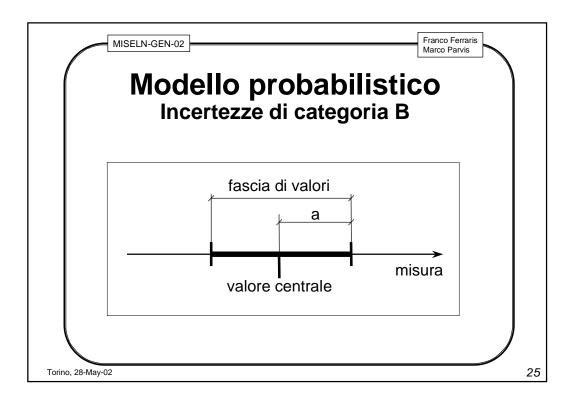
Torino, 28-May-02

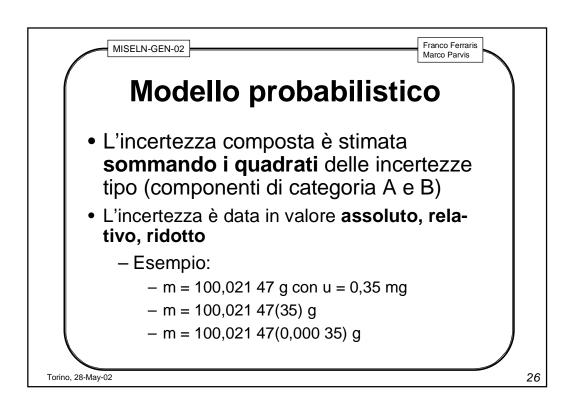
23

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico


Incertezze di categoria B


Esempi

- L'incertezza è DICHIARATA (nel certificato associato al dispositivo) come ampiezza 2a della fascia di valori
- Si ipotizza una distribuzione rettangolare
- Il valore sperato stimato è il valore centrale della fascia
- La stima dell'incertezza tipo si ottiene come:

$$u = a / \sqrt{3}$$

Torino, 28-May-02

MISELN-GEN-02

Franco Ferraris Marco Parvis

Modello probabilistico

- Si fornisce anche una **incertezza estesa (globale)** U, ottenuta moltiplicando u per un fattore di copertura k (compreso fra 2 e 3).
- L'incertezza estesa U rappresenta la fascia di valore
 - Nell'ipotesi di distribuzione normale il fattore di copertura corrisponde al grado di fiducia (k=2 per circa il 95%, k=3 per circa il 99%)

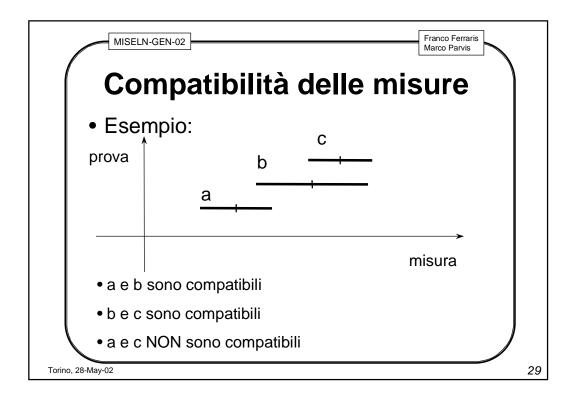
Torino, 28-May-02

27

MISELN-GEN-02

Franco Ferraris Marco Parvis

Compatibilità delle misure


 La presenza dell'incertezza fa perdere significato al concetto di misure uguali

che è sostituito con quello di misure compatibili

Compatibilità delle misure

Si verifica quando le fasce di valore assegnate in diverse occasioni come misura dello stesso parametro nello stesso stato hanno almeno un elemento in comune

Torino, 28-May-02

