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A Double Inequality for the Equivalent
Impulse Bandwidth

Carlo F. M. Carobbi, Member, IEEE, Marco Cati, Member, IEEE, and Carlo Panconi

Abstract—In this paper, we derive a double inequality that per-
mits one to obtain a lower and an upper limit for the value of
the impulse bandwidth of a measuring receiver. The limits are the
reciprocal of the integral of the relative envelope of the impulse
response (lower limit) and the integral of the relative frequency re-
sponse (upper limit) of the intermediate frequency (IF) filter. Since
the limits are relative quantities, their evaluation does not require
the use of a calibrated generator, the only significant sources of
error being receiver’s vertical scale nonlinearity and noise prox-
imity. Here, the deviation between the impulse bandwidth and its
limits is quantified for practical IF filter configurations. The domi-
nant contributions to measurement uncertainty are identified and
suggestions for reducing their magnitude are also offered.

Index Terms—Impulse bandwidth, pulse measurements, radar
measurements, receivers, uncertainty.

I. INTRODUCTION

THE RESPONSE of receivers to impulses has been the ob-
ject of investigation both in the past and in recent times.

Several technical papers [1]–[5], application notes [6], [7], and
standards [8]–[10] deal with the subject making use of the con-
cept of impulse bandwidth and introducing different impulse
definitions and impulse bandwidth measurement techniques.
The need to quantify the electromagnetic interference produced
by ultrawideband devices has led to a renewed interest in the
analysis of receiver response to impulses [11]. Further, increas-
ing attention to the issue of measurement uncertainty has stimu-
lated the reconsideration of well-established measurement tech-
niques in order to identify, quantify, and possibly, minimize the
dominant contributions to uncertainty. Impulse measurements
are no exception in this respect.

The impulse bandwidth Bimp of a receiver is defined as fol-
lows [9], [10]:

Bimp =
A(t)|max

2H0IS
(1)

where A(t)|max is the peak value of the envelope A(t) of the
response of the intermediate frequency (IF) filter to an in-
put impulse vi(t) having area (or impulse strength) IS, i.e.,
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IS =
∫ ∞

0 vi(t)dt, and H0 is the magnitude of the frequency
response of the IF filter at its center frequency. Among the var-
ious methods adopted to evaluate the impulse bandwidth, two
are of specific interest here, namely: 1) the integration of the
normalized envelope of the impulse response of the IF filter
and 2) the integration of the normalized frequency response of
the IF filter, both responses in linear scale. The first method is
described in [8] and [10]. It is interesting to observe that this
method was taken as the operative definition of impulse band-
width in place of (1) in [8] and in the subsequent documents [2]
and [3]. The second method (integration of the frequency re-
sponse) is based on an upper bound on the impulse response
of a real and causal system, which was obtained in [12] [(10)
with WA (t) = 0 and RA (ω) = 0], [13] [(3) with u1(t) = 0 and
H1(ω) = 0], and [14] [Theorem 2, in the special case where
W1(t) = 0 and Te(ω) = T (ω)]. The same result was also de-
rived in [1], where it was pointed out that the bound provides
an upper limit to impulse bandwidth, which can be closely ap-
proximated for specific IF filter designs. The method is also
mentioned in [3] and is adopted by standards and technical doc-
uments, such as [7] and [9], to obtain an approximation to the
equivalent impulse bandwidth.

The scope of this paper is twofold. First, in Section III, we
derive a lower and an upper limit to the equivalent impulse band-
width along with the requirements, for the IF filter response, that
must be met in order that the impulse bandwidth may coincide
with one or the other limit or both. Second, in Section IV, the
limits are quantified for commonly adopted IF filter designs. A
discussion is also included in that section concerning the mea-
surement uncertainty inherent to the experimental determination
of the limits. The basic equations necessary for the derivation
of the results in Section III are introduced in Section II.

II. ENVELOPE DETECTION OF BANDPASS SIGNALS

We here introduce the properties of the envelope of bandpass
signals relevant to the analysis developed in the following sec-
tion. These properties are general, in that they apply to all real
and causal bandpass systems.

Let us consider a single impulse vi(t) applied at the input
of the receiver. It is assumed here that the superheterodyne fre-
quency conversion of the input signal is equivalent to the rigid
transfer of the frequency response of the IF filter (briefly “the
filter,” from now onward) from the IF to the tuning frequency
of the receiver ωS . Thus, ωS also corresponds to the center fre-
quency of the filter. If H(ω) is the complex transfer function
of the filter, then H0 = |H(ωS )|. Also, if h(t) is the filter re-
sponse to the Dirac’s impulse of unit area δ(t), then, we have
h(t) = 1

2π

∫ ∞
−∞ H(ω)ejωtdω.
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The impulse response of a bandpass system [15, Th. 3,
p. 123] is as follows:

h(t) = Re{ĥ(t)ej (ωS t+ϕS )}

where ϕS = arg[H(ωS )]. The time-domain function ĥ(t) is
termed as the complex envelope of the impulse response. If the
magnitude of the response |H(ω)| is negligibly small outside
the interval |ω − ωS | < Ω/2, then

ĥ(t) =
1
2π

∫ Ω/2

−Ω/2
Ĥ(ω)ejωtdω (2)

where Ĥ(ω) = Zh(ω + ωS )e−jϕS , Zh(ω) = 2H(ω)U(ω), and
U(ω) represents the Heaviside step function. Ĥ(ω) is said to be
the equivalent low-pass filter of the bandpass H(ω). Note that

Ĥ(0) = 2H(ωS )e−jϕS . (3)

In the case where H(ω) is a symmetric bandpass filter, i.e.,
|H(ω)| is even and arg[H(ω)] − ϕS is odd around ωS , then
Ĥ(−ω) = Ĥ∗(ω) and ĥ(t) is real.

The filter output signal vo(t) is given by [15, Th. 4,
p. 123]

vo(t) = Re{v̂e(t)ej (ωS t+ϕS )}
where v̂e(t) is the complex envelope of the output voltage and

v̂e(t) =
∫ ∞

0
ĥ(t − θ)vi(θ)e−jωS θdθ. (4)

The envelope of the output voltage is, by definition, A(t) =
|v̂e(t)|. Equations (2) and (4) form the basis of the analysis in
the next section.

III. DERIVATION OF A DOUBLE INEQUALITY

FOR THE IMPULSE BANDWIDTH

We here derive an upper and a lower limit for the impulse
bandwidth of a receiver. As an intermediate step, it is neces-
sary to evaluate the peak value of the envelope of the receiver’s
response to a wideband input signal. A wideband signal is in-
tended as a signal, whose spectral density is constant through
the bandwidth of the receiver or, equivalently, whose duration is
short with respect to the duration of the envelope of the impulse
response of the receiver. In our derivations vi(t) is a Dirac’s
delta impulse of area IS. This greatly simplifies the analysis
while keeping it informative. Indeed, the results obtained are
also valid in the case of a finite (nonzero) duration and finite-
amplitude input impulse provided that |H(ω)| is symmetric
around ωS , as is shown in the Appendix.

Let us consider (4). If vi(t) = IS δ(t), then v̂e(t) = IS ĥ(t).
Substituting into (2) and taking the magnitude, we obtain

A(t) = IS
1
2π

∣∣∣∣∣
∫ Ω/2

−Ω/2
Ĥ(ω)ejωtdω

∣∣∣∣∣ . (5)

Hence, A(t)|max ≤ IS[1/2π
∫ Ω/2
−Ω/2 |Ĥ(ω)|dω]. By using the

bandpass assumption, we have

A(t)|max ≤ 2IS
[

1
2π

∫ ∞

0
|H(ω)|dω

]
. (6)

We have just obtained an upper limit on the maximum value
of the envelope of the filter output. We observe that if the phase
response of the filter is linear, at least within the frequency range,
where |ω − ωS | < Ω/2, we have arg[Ĥ(ω)] = −τgω, where τg

is the group delay. Hence, the integral in (5) can be rewritten as
follows:∣∣∣∣∣

∫ Ω/2

−Ω/2
Ĥ(ω)ejωtdω

∣∣∣∣∣ =

∣∣∣∣∣
∫ Ω/2

−Ω/2
|Ĥ(ω)|ejω (t−τg )dω

∣∣∣∣∣
from which we conclude that

A(t)|max = A (τg ) = 2IS
[

1
2π

∫ ∞

0
|H(ω)| dω

]
.

Thus, if the phase response of the filter is linear, the maximum
amplitude of the envelope is reached at t = τg and its value
corresponds to the upper limit in (6).

By integration of the complex envelope of the output voltage,
we obtain ∫ ∞

0
v̂e(t)dt = IS

∫ ∞

0
ĥ(t)dt. (7)

Since Ĥ(0) =
∫ ∞

0 ĥ(t)dt, from (7), we have
∫ ∞

0 v̂e(t)dt =
ISĤ(0). By using (3), we obtain∫ ∞

0
v̂e(t)dt = 2ISH(ωS )e−jϕS . (8)

Taking the magnitude of the left and right side of (8), we find∫ ∞

0
A(t)dt ≥ 2ISH0 (9)

where we used |
∫ ∞

0 v̂e(t)dt| ≤
∫ ∞

0 |v̂e(t)|dt =
∫ ∞

0 A(t)dt.
Note that if v̂e(t) is real and positive, the identity applies in
(9). v̂e(t) is real for a symmetric, bandpass filter. Further, v̂e(t)
is positive if, for example, H(ω) corresponds to a single or a
cascade of tuned stages (see Section IV-B). Now, substituting
(6) and (9) into (1), we finally obtain

A(t)|max∫ ∞
0 A(t)dt

≤ Bimp ≤
1/2π

∫ ∞
0 |H(ω)|dω

H0
. (10)

IV. EVALUATION OF THE LIMITS IN PRACTICAL CASES

It is of interest to evaluate the impulse bandwidth and its lim-
its, as defined by the double inequality (10), in the more common
cases of practical IF filter designs. Two IF filter configurations
will be considered: the cascade of two ideal, critically coupled,
tuned circuits, and the cascade of n single-tuned circuits. These
or similar designs are implemented in receiver architectures and
their ideal behavior is frequently adopted as a reference (see [1],
[2], [7], and [9]) for the prediction of the response of receivers
to standard signals (i.e., sine wave, impulse, and noise).

A. Cascade of Two Ideal, Critically Coupled, Tuned Circuits

In this case, the equivalent low-pass filter is

Ĥ(ω) =
8ω4

0

[(ω0 + jω)2 + ω2
0 ]2

(11)
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and the corresponding complex envelope is

ĥ(t) = 4ω0 [e−ω0 t(sin ω0t − ω0t cos ω0t)] (12)

where ω0 = πB6/
√

2 and B6 is the 6 dB bandwidth of the fil-
ter. To simplify the notation, H0 = 1 was assumed, and then,
Ĥ(0) = 2. Since the filter is symmetric, ĥ(t) is real. Also note
that ĥ(t) has an oscillating waveform. The envelope of the im-
pulse response is as follows:

A(t) = 4ISω0e
−ω0 t |sin ω0t − ω0t cos ω0t|. (13)

From numerical computation, we have that

A(t)|max = 1.048(2IS)B6

then from (1) Bimp = 1.048B6 . Also, since∫ ∞

0
A(t)dt = 1.133(2IS)

then the lower limit on Bimp [see (10)] is 0.883Bimp . Further,
since

1
2π

∫ ∞

0
|H(ω)|dω =

πB6

2
√

2
= 1.111B6

then the upper limit is 1.060Bimp .
It is interesting to observe that from (11), we have

τg =
2
ω0

=
2
√

2
πB6

and from (13), we have

A(τg ) = 1.047(2IS)B6 .

Hence, A(τg ) provides a very good approximation of
A(t)|max (relative deviation less than 0.1%).

B. Cascade of n-Identical Single-Tuned Circuits

The equivalent low-pass filter of this configuration is

Ĥ(ω) =
2ωn

0

(ω0 + jω)n
(14)

and the complex envelope is

ĥ(t) = 2ω0
(ω0t)n−1e−ω0 t

(n − 1)!
(15)

where ω0 = πB6/
√

41/n − 1. Again H0 = 1, then Ĥ(0) = 2.
Note that ĥ(t) is a unidirectional impulse, hence we have A(t) =
ve(t) and the lower limit of (10) corresponds to Bimp . Since A(t)
reaches its maximum value at the time instant (n − 1)/ω0 , from
(15)

A(t)|max = 2IS
π(n − 1)n−1e−(n−1)
√

41/n − 1(n − 1)!
B6

and from (1)

Bimp =
π(n − 1)n−1e−(n−1)
√

41/n − 1(n − 1)!
B6 . (16)

If n increases, then Bimp decreases, tending to

1/2 ·
√

π/ ln 2B6 = 1.064B6

TABLE I
IMPULSE BANDWIDTH AND THE CORRESPONDING LOWER AND UPPER

LIMITS, AS GIVEN BY (10), FOR THE CASCADE OF n-IDENTICAL

TUNED FILTER CIRCUITS

as n tends to infinity. In Table I, the values of Bimp are reported
together with the lower and upper limits of (10) for the values
of n comprised between 1 and 10.

Common filter configurations are obtained cascading four or
five stages [7]. The values of Bimp and their limits, correspond-
ing to a number of stages other than four and five, are however
instructive. For example, we see that the upper limit is infinity
for a single-tuned stage. This is due to the magnitude of the
filter response, being asymptotically proportional to 1/ω, as ω
tends to infinity. Also, we observe that the upper limit slowly
decreases for values of n greater than four, but it still produces
an overestimate of about 5% when n = 8.

The group delay is τg = n/ω0 = n
√

41/n − 1/πB6 and the
relative deviation between A(τg ) and A(t)|max is 13% when
n = 4, 10% for n = 5 and reduces to 5% when n = 10.

C. Summary and Comments

We summarize here the results derived in this section and
we offer some comments concerning measurement uncertainty.
In the case where the filter is realized through cascading two
critically coupled tuned circuits, the limits for Bimp , as obtained
from (10), are −11.7% and +6.0%. Then, if one measures both
limits and calculates the mean value, this deviates from Bimp
by less than +3%. If the filter is obtained by cascading simple
tuned stages, then the complex envelope of the impulse response
is (real and) unidirectional and the value of Bimp corresponds
to the lower limit in (10). According to our experience, this is
the most frequent case (unidirectional envelope of the impulse
response), therefore the estimate corresponding to the lower
limit usually represents the preferred option.

The main contributions to the measurement uncertainty of the
lower and upper limits originate both from the deviation from
linearity of the vertical scale of the receiver and from the pres-
ence of noise. The effect of the scale nonlinearity is mitigated in
part by the fact that the limits are obtained through integration,
and then, errors cancel out each other (here zero-mean linear-
ity error is assumed). However, the presence of noise manifests
itself through a pedestal value, which adds up to the integrand,
thus enlarging the interval defined by (10), i.e., the measured
lower limit is smaller and the measured upper limit is greater
than they should be in absence of noise. In order to minimize the
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effect of noise, the average noise level N should be separately
measured when input signal is absent, and then, subtracted from
the average1 displayed signal Sdys (the displayed envelope of
the filter pulse response or frequency response), according to
the following formula:

S =




√
S2

dys − N 2 , if Sdys ≥ N

0, if Sdys < N
(17)

where S is the quantity to be integrated to obtain the lower
and upper limits. Equation (17) represents an approximation
(nearly 4% maximum error) of the first-order moment of the
Rice probability density function [16].

V. CONCLUSION

The availability of different options to measure impulse band-
width is very useful because the span of technical applications
is so wide that impulse bandwidth values may range from hun-
dreds of hertz to tens of megahertz, depending on the specific
purpose. Methods offering straightforward implementation and
low measurement uncertainty are to be preferred.

The impulse bandwidth of a receiver, as defined in (1), is
demonstrated to be bounded between the theoretical limits given
by the double inequality (10), which is very general. In the case
of practical IF filter designs, the deviation between the limits
and the definition is very small (from zero to few percents). The
mathematical expression of the limits describes measurement
methods that can be readily implemented in order to derive an
estimate of the impulse bandwidth. The methods are intrinsically
immune from absolute and random errors, being based on the
integration of a relative quantity. A formula to correct for the
systematic additive error due to the intrinsic noise of the receiver
is provided. Further, the evaluation of the integrals is greatly
facilitated and made very accurate by the availability in modern
receivers of the numerical values of the displayed trace and the
same applies to the time-domain signal extracted from the video
output of the receiver and sent to a digital oscilloscope.

Measurement campaigns and interlaboratory comparisons
would be highly welcome with the scope to assess the limits
of accuracy of the determination of impulse bandwidth, using
different measurement methods and covering the wide range of
bandwidth values involved in modern applications.

APPENDIX

We consider (4) and allow for a smooth variation of ĥ(t)
during the duration of vi(t). We assume that in this time inter-
val, ĥ(t − θ) can be well approximated by its first-order Taylor
expansion around θ = 0, i.e., ĥ(t − θ) = ĥ(t) − ĥ′(t)θ. Substi-
tuting into (4), we obtain

v̂e(t)= ĥ(t)
∫ ∞

0
vi(θ)e−jωS θdθ − ĥ′(t)

∫ ∞

0
θ vi(θ)e−jωS θdθ.

(A1)

1Averaging is obtained through multiple acquisitions of the displayed signal.
The video over resolution bandwidth ratio shall be large (e.g., ten or more) in
order to avoid distortion due to video filtering, particularly when the impulse is
applied at the input of the receiver.

Now, since

Vi(ωS ) =
1
2π

∫ ∞

−∞
vi(t)e−jωS tdt

ĥ′(t) =
j

2π

∫ Ω/2

−Ω/2
ωĤ(ω)ejωtdω

and ∫ ∞

0
θ vi(θ)e−jωS θdθ = jV ′

i (ωS )

we obtain from (A1)

v̂e(t) = Vi(ωS )ĥ(t) + V ′
i (ωS )

∫ Ω/2

−Ω/2
ωĤ(ω)ejωtdω. (A2)

Note that the term Vi(ωS ) ĥ(t) in (A2) corresponds to ISĥ(t)
in (11). Hence, if the correction term

V ′
i (ωS )

∫ Ω/2

−Ω/2
ωĤ(ω)ejωtdω

in (A2) were negligible, all the results obtained in the main text
assuming an ideal Dirac’s impulse at the filter input would be
valid also for a real wideband input impulse, once taken Vi(ωS )
in place of IS. To show this, we evaluate the magnitude of the
correction term at t = τg , i.e., at the instant where the envelope
approximately reaches its maximum value. We have

|v̂e(τg )−Vi(ωS )ĥ(τg )| ≈
∣∣∣∣∣V ′

i (ωS )
∫ Ω/2

−Ω/2
ω|Ĥ(ω)|dω

∣∣∣∣∣ (A3)

where we used Ĥ(ω) ≈ |Ĥ(ω)|e−jωτg . Now, since most prac-
tical filter configurations have symmetric frequency response,∫ Ω/2
−Ω/2 ω|Ĥ(ω)|dω = 0 and the desired conclusion follows.
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