| Qualitative verification | Quantitative evaluation |  |
|--------------------------|-------------------------|--|
|                          |                         |  |
|                          |                         |  |

# Qualitative verification and quantitative evaluation of timed concurrent systems

## Laura Carnevali

Dipartimento di Ingegneria dell'Informazione, Università di Firenze laura.carnevali@unifi.it - http://stlab.dinfo.unifi.it/carnevali

Firenze - April 16, 2019

| Introduction | Qualitative verification | Quantitative evaluation |  |
|--------------|--------------------------|-------------------------|--|
| 0            |                          |                         |  |
| Short bio    |                          |                         |  |
|              |                          |                         |  |

- Educazione
  - 2001–2004: Laurea in Ingegneria Informatica
  - 2004–2006: Laurea specialistica in Ingegneria Informatica
  - 2007-2010: Dottorato in Ingegneria Informatica, Multimedialità e Telecomunicazioni
- Posizioni accademiche
  - 2010–2013: Assegnista di ricerca
  - 2013-2016: Ricercatore a Tempo Determininato Tipologia A
  - 2016–2019: Ricercatore a Tempo Determininato Tipologia B
- Periodi di ricerca all'estero
  - 2014 (marzo-giugno): École normale supérieure de Cachan, Paris, France
- Abilitazioni
  - 2015: Abilitazione scientifica nazionale, seconda fascia, s.c. 09/H1 (s.s.d. ING-INF/05)
- Didattica
  - 2011–2013: Fondamenti di Informatica, Laurea in Ingegneria Meccanica (6 CFU)
  - 2013-... : Fondamenti di Informatica, Laurea in Ing. Elettronica e delle Telecom. (9 CFU)
  - Berretti, Carnevali, Vicario, "Fondamenti di programmazione", 2017.
- Partecipazione a progetti di ricerca e trasferimento tecnologico
  - Progetti europei: REMIND
  - Progetti regionali e nazionali: LINFA, INDIGO, GENIALE, ERNESTO, REICA, WISEDEMON, ...
  - Progetto di ateneo NEW-ERTMS (in collaborazione con Enrico Meli DIEF)
  - Collaborazioni con aziende: NEC Corporation (Japan), Visia Imaging s.r.I (Arezzo), ...

| 0                               | 000                            | 0000000    | 0 |
|---------------------------------|--------------------------------|------------|---|
| Main research inte              | erests                         |            |   |
| Qualitative v<br>(will a task m | verification of timed concurre | nt systems |   |

- Integration of formal methods in the life cycle of real-time software
- · Qualitative verification of hierarchical scheduling systems
- Application to an industrial development process



Quantitative evaluation of timed concurrent systems (which is the probability that a task misses its deadline?)

- Stochastic analysis of models with multiple concurrent non-Markovian timers
- Input generation in testing of real-time stochastic systems
- Application to performance and reliability analysis in various contexts
  - Performability evaluation of communication protocols in railway systems
  - · Performability evaluation of cyber-physical systems during repair
  - Activity recognition in partially observable systems



Introduction

|                           | Qualitative verification      | Quantitative evaluation        |    |
|---------------------------|-------------------------------|--------------------------------|----|
| 00                        | <b>●</b> 00                   | 000000                         |    |
| 1) Qualitative verificati | on of timed concurrent syster | ns: goal, motivation, challeng | es |

- Integration of formal methods within the development cycle of real-time SW
  - Encouraged by certification standards, e.g., RTCA/DO-178B [1,2]
  - Provided that consolidated industrial practices are not disrupted
  - Addressed by Model Driven Development (MDD) approaches
- Faces different theoretical and practical challenges
  - Faces the effects of concurrency, timing, and suspension
  - · Faces the gap between formal domains and industrial practices
- An example referred to SW design: will a task miss its deadline or not?



[1] RTC for Aeronautics, DO-178B, Software Considerations in Airborne Systems and Equipment Certification, 1992 [2] RTC for Aeronautics, DO-178C, Software Considerations in Airborne Systems and Equipment Certification, 2012

| Qualitative verification | Quantitative evaluation |  |
|--------------------------|-------------------------|--|
| 000                      |                         |  |
|                          |                         |  |

## A methodology for integration of formal methods within the SW development cycle [3]

- V-Model tailored according to MIL-STD-498 [4]
  - Uses preemptive Time Petri Nets (pTPNs) [5] to support development (V-Model)
  - Uses UML-MARTE [6] to support documentation (MIL-STD-498)
- Application to an industrial development process at Selex ES Firenze (now Leonardo) [7]



[3] Carnevali, Ridi, Vicario, "Putting preemptive Time Petri Nets to work in a V-Model SW life cycle", IEEE Trans. on Software Engineering, 2011

[4] US Department of Defense," MIL-STD-498, Military standard for sw development and documentation", Tech. rep., USDoD, 1994

[5] Bucci, Fedeli, Sassoli, Vicario, "Timed state space analysis of real-time preemptive systems", IEEE Trans. on Software Engineering, 2004

[6] Object Managem. Group, "UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded systems v1.0", 2009.

[7] Bicchierai, Bucci, Carnevali, Vicario, "Combining UML-MARTE and preemptive Time Petri Nets: An Industrial Case Study", IEEE Trans. Industrial Inform., 2013

|    |  | Qualitat | ive verification |  |  |          | Quantitative evaluation |         |  |     |  |
|----|--|----------|------------------|--|--|----------|-------------------------|---------|--|-----|--|
| 00 |  |          | 000              |  |  |          |                         | 0000000 |  |     |  |
| ~  |  | 1.41     |                  |  |  | <u> </u> |                         | (1.10)  |  | 101 |  |

#### Compositional verification of Hierarchical Scheduling (HS) systems [8]

- Addressing the ARINC-653 standard [9]
- Facing concurrency and timing in design and verification
  - Sequencing of events (e.g., mutual exclusion, deadlocks, inter-component interactions)
  - Timing of events (e.g., min-max execution times, deadlines)
- Leverages the theory of preemptive Time Petri Nets (pTPNs)
  - Exact verification of intra-application constraints
  - · Approximate but safe verification of inter-application constraints
- Experimentation on avionic systems of real complexity (15 concurrent tasks) [10]



| Appl. | Slot | Slot length       | Task              | Release     | Offset | Jitter  | Deadline         | Chunk            | Prio      | Exec. Time | Sem               | Mbx                   |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|-------|------|-------------------|-------------------|-------------|--------|---------|------------------|------------------|-----------|------------|-------------------|-----------------------|--|--|--|--|--|--|--|--|--|--|--|--|---|--|------|--|------|---|-----------|-------------------|--|
|       |      |                   | Tsk <sub>11</sub> | [10,10]     | 0      | [0,0]   | 5                | C <sub>111</sub> | 2         | [0.6,0.8]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   | Tekus             | [40, 40]    | 0      | [0.1]   | 40               | C121             | 3         | [1.0, 1.2] | •                 |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   | 7.8512            | [ao, ao]    | v      | [0, 1]  | 40               | C122             | 3         | [0.2,0.4]  |                   | mbx11(r)              |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
| A1    | T1   | 3                 | Tokus             | [40.40]     | 10     | [0.2]   | 40               | C131             | 4         | [1.8,2.3]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   | 100012            | [100, 100]  |        | 149,441 |                  | C132             | 4         | 0.6.0.9    |                   | mbx <sub>11</sub> (s) |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   | Tsku              | [40,∞)      | 20     | [0.0]   | 40               | C141             | 5         | [1.1,1.4]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   |                   | 107         |        | 1004    |                  | C142             | 5         | [0.1,0.2]  |                   | · ·                   |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   | Teker             | [40 m)      | 0      | [0.0]   | 40               | C <sub>211</sub> | 2         | [0.2,0.3]  | mux <sub>21</sub> |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   | rangi             | [40,-)      | v      | [0,0]   | 40               | C212             | 2         | [0.4,0.5]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      | 4                 | Tokan             | [50 50]     | 0      | [0 1]   | 50               | C221             | 3         | [4.6,6.1]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
| An.   | Ta   |                   | 100.04            | feeteel     |        | 100.0   |                  | C222             | 3         | 0.2.0.3    | mux <sub>21</sub> |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
| ~ 12  |      | Takan             | [50, 50]          | 0           | [0.2]  | 50      | C <sub>231</sub> | 4                | [3.4,4.4] |            |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   |                   |             |        |         |                  |                  |           |            |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 10.1 |  | C232 | 4 | [0.2,0.4] | mux <sub>22</sub> |  |
|       |      |                   | Takou             | 4 [50,50]   | 16     | [0.0]   | 50               | C241             | 5         | 4.7.6.1    |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   |                   | 1.000       |        | 1004    |                  | 6242             | 5         | [0.1,0.3]  | mux <sub>22</sub> |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
| A1    | Ta   | 1                 | Tsk <sub>31</sub> | [80,80]     | 2      | [0,0]   | 80               | C <sub>311</sub> | 2         | [3.6,4.8]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       | - 4  |                   | Tsk <sub>32</sub> | [100,∞)     | 15     | [0,0]   | 100              | C <sub>321</sub> | 3         | [0.4,0.5]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   | Tab               | [400.400]   |        | (a a r1 | 400              | C411             | 2         | [3.4,4.2]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       | 7    |                   | 7341              | [100,100]   |        | [0,2.5] | 100              | C412             | 2         | 0.8, 1.4   | mux <sub>41</sub> |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
| ~     | 14   |                   | Tekus             | [200 m)     | 10     | [0.0]   | 200              | C421             | 3         | [0.4,0.5]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   | range             | [200,-)     | 10     | [0,0]   | 200              | C422             | 3         | [0.2,0.3]  | mux <sub>41</sub> |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
| _     |      |                   | Tsk <sub>51</sub> | [200,200]   | 10     | [0,0]   | 200              | C511             | 2         | [1.2, 1.6] |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
| A5 T5 | 1    | Tsk <sub>52</sub> | [400,∞)           | 3           | [0,0]  | 400     | C521             | 3                | [3.6,4.8] |            |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |
|       |      |                   | Tsk <sub>53</sub> | [1000,1000] | 0      | [0,2]   | 1000             | C <sub>531</sub> | 4         | [3.0,4.0]  |                   |                       |  |  |  |  |  |  |  |  |  |  |  |  |   |  |      |  |      |   |           |                   |  |

[8] Carnevali, Pinzuti, Vicario, "Compositional verification for Hierarchical Scheduling of Real-Time systems", IEEE Trans. on Software Engineering, 2013 [9] Avionics Electronic Engineering Committee (ARINC), "Avionics application software standard interface: Part 1 - required services". Technical report, 2006 [10] Locke, Vogel, Lucas, "Generic avionics Software specification", Technical report, Software Engineering Institute, Carnegie Mellon University, 1990

| Introduction |  | Qualit | tative verific |  | Qu | antitative evaluatio | n |  |  |
|--------------|--|--------|----------------|--|----|----------------------|---|--|--|
|              |  |        |                |  | 00 | 00000                |   |  |  |
| -            |  |        | A              |  |    |                      |   |  |  |

2) Quantitative evaluation of timed concurrent systems: goal, motivation, challenges

- Quantitative evaluation of models with multiple concurrent non-Markovian timers
  - High variability in timed behavior is frequent (e.g., event-triggered systems)
  - Analysis based on Worst Case Execution Times (WCETs) yields too pessimistic results
  - RAMS requirements: not only Safety, but also Reliability, Availability, Maintainability
- Faces different theoretical and practical challenges
  - Non-Markovian temporal parameters keep memory of past history
  - Trade-off between the model expressivity and the analysis complexity
- An example referred to SW design: which is the probability that a task misses its deadline?



|                    | Qualitative verification     | Quantitative evaluation |  |
|--------------------|------------------------------|-------------------------|--|
|                    |                              | 000000                  |  |
| The method of stoc | hastic state classes [11,12] |                         |  |

- Computes the joint Probability Density Function (PDF) of the active timers after each event
  - Timers may have a non-Markovian (i.e., non-Exponential) PDF possibly with bounded domain
  - Representation of bounded execution times, jitters, deadlines, periodic releases, timeouts, ...



• Complexity can be reduced by approximating PDFs through Bernstein polynomials



[11] Vicario, Sassoli, Carnevali, "Using Stochastic State Classes in Quantitative Evaluation of Dense-Time Reactive Systems", IEEE Trans. Software Eng., 2009 [12] Carnevali, Grassi, Vicario, "State-Density Functions over DBM Domains in the Analysis of Non-Markovian Models", IEEE Trans. Software Eng., 2009

| Qualitative verification | Quantitative evaluation |  |
|--------------------------|-------------------------|--|
|                          | 000000                  |  |
|                          |                         |  |

## Testing of real-time stochastic systems: the problem of input generation [13]

• Temporal parameters of a real-time system can be controllable or non-controllable



- Derives the probability of *conclusive* test execution as a function of controllable parameters
- Reduces the number of test repetitions with respect to random testing



[13] Carnevali, Ridi, Vicario, "A Quantitative Approach to Input Generation in Real-Time Testing of Stochastic Systems", IEEE Trans. Software Engineering, 2013

| Desite one of the construction at a |                          | -1.0.14.41              |   |
|-------------------------------------|--------------------------|-------------------------|---|
| 00                                  | 000                      | 000000                  | 0 |
|                                     | Qualitative verification | Quantitative evaluation |   |

#### Performability evaluation of the ERTMS/ETCS - Level 3 [14]

- ERTMS/ETCS Level 3: an innovative standard for train signalling and traffic management
  - Moving-block signalling: trains check position and integrity autonomously
  - Continuous bidirectional (track  $\leftrightarrow$  train) mobile communication
  - Braking curve recomputed continuously  $\Rightarrow$  increased maximum speed, capacity gains



- Goal: evaluate the first-passage time distribution to a *spurious* emergency brake
  - Evaluation within 2 hyper-periods (periodic Position Reports + periodic handovers) is enough



[14] Biagi, Carnevali, Paolieri, Vicario, "Performability evaluation of the ERTMS/ETCS - Level 3", Transportation Research Part C: Emerging Technologies, 2017

| Qualitative verification | Quantitative evaluation |  |
|--------------------------|-------------------------|--|
|                          | 0000000                 |  |
|                          |                         |  |

## Performability evaluation of gas distribution networks during repair procedures [15]

- Gas networks couple physical fluid-dynamics with cyber management procedures
- Goal: evaluate the low pressure risk in the transient phase after a repair
  - Combine fluid-dynamic analysis of gas behavior and stochastic analysis of repair actions





[15] Biagi, Carnevali, Tarani, Vicario, "Model-based quantitative evaluation of repair procedures in gas distribution networks", ACM Tran. Cyber-Phys. Sys., 2018

| Introduction | Qualitative verification | Quantitative evaluation |  |
|--------------|--------------------------|-------------------------|--|
|              |                          | 0000000                 |  |
|              |                          |                         |  |

## Performability evaluation of gas distribution networks during repair procedures [15]

- Gas networks couple physical fluid-dynamics with cyber management procedures
- Goal: evaluate the low pressure risk in the transient phase after a repair
  - Combine fluid-dynamic analysis of gas behavior and stochastic analysis of repair actions



[15] Biagi, Carnevali, Tarani, Vicario, "Model-based quantitative evaluation of repair procedures in gas distribution networks", ACM Tran. Cyber-Phys. Sys., 2018

| 00 | 000                      | 0000000                 |  |
|----|--------------------------|-------------------------|--|
|    | Qualitative verification | Quantitative evaluation |  |

#### Performability evaluation of water distribution systems during repair procedures [16]

- A more complex problem referred to the class of stochastic hybrid systems
  - Water distribution systems feature a continuous and a discrete dynamics
  - Water level in tanks comprises a continuous element of memory
  - Topology and operation mode can be changed at stochastic time points



• Goal: evaluate the *expected demand not served* in the time after a repair

Combine fluid-dynamic analysis of gas behavior and stochastic analysis of repair actions



[16] Carnevali, Tarani, Vicario, "Performability evaluation of water distribution systems during maintenance procedures", IEEE Trans. Sys. Man Cyb., accepted

| A 10 10 B |                          |                         |  |
|-----------|--------------------------|-------------------------|--|
|           |                          | 000000                  |  |
|           | Qualitative verification | Quantitative evaluation |  |

### Activity Recognition (AR) in Ambient Assisted Living (AAL) [17]

- Monitoring of high level human activities through low-level observations by sensors
- A continuous-time model-based approach
  - A stochastic model is rejuvenated by runtime (typed and time-stamped) observations
  - Transient analysis of the model provides a likelihood for the possible current activities
- A kind of continuous-time extension of Hidden Markov Models (HMMs)



[17] Biagi, Carnevali, Paolieri, Patara, Vicario, "A continuous-time model-based approach for activity recognition in pervasive environments", IEEE Transactions on Human-Machine Systems, accepted

| Introduction    | Qualitative verification | Quantitative evaluation | Conclusions |
|-----------------|--------------------------|-------------------------|-------------|
|                 |                          |                         | •           |
| Some references |                          |                         |             |
|                 |                          |                         |             |

#### Qualitative verification of real-time concurrent systems

- I. Bicchierai, G. Bucci, L. Carnevali, and E. Vicario, "Combining UML-MARTE and preemptive Time Petri Nets: An Industrial Case Study", IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 1806-1818, November 2013.
- L. Carnevali, L. Ridi, and E. Vicario, "Putting Preemptive Time Petri Nets to Work in a V-Model SW Life Cycle", IEEE Transactions on Software Engineering, vol. 37, no. 6, pp. 826-844, November/December 2011.
- G.Bucci, L. Carnevali, L. Ridi, and E. Vicario, "Oris: a tool for modeling, verification and evaluation of real-time systems", International Journal of Software Tools for Technology Transfer, vol. 12, no. 5, pp. 391-403, 2010.

#### Quantitative evaluation of real-time concurrent systems

- M. Paolieri, M. Biagi, L. Carnevali, E. Vicario, "The ORIS Tool: Quantitative Evaluation of Non-Markovian Systems", IEEE Transactions on Software Engineering, submitted after minor revision.
- M. Biagi, L. Carnevali, M. Paolieri, F. Patara, E. Vicario, "A continuous-time model-based approach for activity recognition in pervasive environments", IEEE Transactions on Human-Machine Systems, to appear.
- L. Carnevali, F. Tarani, and E. Vicario, "Performability Evaluation of Water Distribution Systems During Maintenance Procedures", IEEE Transactions on Systems, Man, and Cybernetics: Systems, to appear.
- M. Biagi, L. Carnevali, F. Tarani, and E. Vicario, "Model-based quantitative evaluation of repair procedures in gas distribution networks", ACM Transactions on Cyber-Physical Systems, vol. 3, no. 2, pp. 19:1–19:26, December 2018.
- M. Biagi, L. Carnevali, M. Paolieri, and E. Vicario, "Performability evaluation of the ERTMS/ETCS Level 3", Transportation Research Part C: Emerging Technologies, vol. 82, pp. 314-336, September 2017.
- L. Carnevali, A. Pinzuti, and E. Vicario, "Compositional Verification for Hierarchical Scheduling of Real-Time Systems", IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 638-657, May 2013.
- L. Carnevali, L. Ridi, and E. Vicario, "A Quantitative Approach to Input Generation in Real-Time Testing of Stochastic Systems", IEEE Transactions on Software Engineering, vol. 39, no. 3, pp. 292-304, March 2013.
- E. Vicario, L. Sassoli, and L. Carnevali, "Using Stochastic State Classes in Quantitative Evaluation of Dense-Time Reactive Systems", IEEE Transactions on Software Engineering, vol. 35, no. 5, pp. 703-719, September/October 2009.
- L. Carnevali, L. Grassi, and E. Vicario, "State-Density Functions over DBM Domains in the Analysis of Non-Markovian Models", IEEE Transactions on Software Engineering, vol. 35, no. 2, pp. 178-194, March/April 2009.