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Microgrids & Smart Grids

A MICROGRID is an electrical system that includes multiple loads and distributed energy resources that can
be operated in parallel with main grid or as an electrical island.

In the Distributed Generation scenario, the MICROGRID concept has been introduced as a solution to provide
high power quality and to improve the reliability of the traditional electrical power system.

A MICROGRID with INTELLIGENT features is a SMART GRID

POWER-ELECTRONICS-BASED
SMART GRIDS

AC SMART DC SMART
GRIDS GRIDS

INTERCONNECTION
INTERCONNECTION UNIVERSAL BASED ON A DC
BASED ON LCL OPERATION MULTIBUS
FILTER

Rosa A. Mastromauro
PAGE 3



DC & AC Microgrids

Problems in AC Microgrids:

» Synchronization of distributed generators

» Inrush current (transformers, Induction motors, Induction generators)

» Three-Phase Unbalance (single-phase loads, single-phase generators such as PV)

Recent Trends

» Introduction of many Inverter loads (AC/DC and DC/AC conversions are included)

» Introduction of distributed generations with DC output (photovoltaic, fuel cell,variable
speed type wind turbine, microturbine, gas engine)

» Needs for higher quality power
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DC Smart Grids Advantages

- DC Smart Grids are a good solution for autonomous systems when trying to combine:
PV systems with batteries

- DC Smart Grids can naturally interface:
O DCsources: PV, fuel cells.
O DC storage: supercapacitors, batteries
O DCloads: LEDs, electronic loads

- DC Smart Grids are more efficient than AC Smart Grids ..... in general !
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DC Smart Grids Advantages

Fluctuation of generated power of distributed generators and load power can be
compensated in the DC line by using energy storage devices

Loads are not affected by voltage sag, voltage swell, three-phase voltage unbalance,
and voltage harmonics

Power quality is not affected by inrush current, single-phase loads and single-phase
generators

Synchronization of distributed generators are not necessary.
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DPGS Control Features for AC and DC Power Systems
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- Some of these control functions can be avoided in case of DC Smart Grids !

Rosa A. Mastromauro

PAGE 7



DC Smart Grids Voltage Levels

400V: This voltage level has been used in dc datacenters. This is relatively high voltage
and hence highly effective grounding and protection techniques are required.

325V: It is equal to the peak of the AC phase voltage. Standard single phase power
supplies with diode bridge input stage have DC-link voltage of 325 V. Hence, existing
supplies are compatible with this DC voltage level.

230V: It has the same root mean square value as that of the existing AC system. Hence,
the resistive loads (mostly heating) rated to operate with the existing AC system need

not be modified, if this voltage level is used.

120V: It is an intermediate level between very low voltage and the existing AC system
voltage.

48V: It is used in the telecom sector, hence supporting devices for this voltage level are
available.
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DC Smart Grids Challenges

» Efficiency: System efficiency depends on the power conversion stages between
the sources and loads. As the power conversion stage and its efficiency depends
on voltage levels, system efficiency also depends on DC bus voltage level.

» Cost: The cost of the power converters topologies depends on the voltage levels.
Cabling size is decided by the current to be carried, which in turn depends on the
system power and voltage level. Typically, converter and cabling costs increase
with the reduction in voltage level. This limits the use of low DC voltage for high
power application.

» Safety: Very low voltage (less than 50V) is considered safe for humans up to 3
seconds of direct contact. However, even for this voltage range, grounding
practice is necessary for the protection of devices/equipments.

» Protections: circuit complexity (no zero-crossing detection);

» Unclear pathway for moving from AC-centric power distribution to DC-inclusive
distribution schemes.
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Smart Grids Control Strategies

Control

Decentralized

Distributed

> The power converter is the fundamental interface between the DPGS and the power system and

of capabilities are possible

v" Do not require digital communication
v" Highly flexible and expandable
v" Simplicity of control

v’ Sparse communication
v" Highly flexible
v Reconfigurable

Technique Advantages Disadvantages
v’ Easy implementation v Limited flexibility
Centralized v" Overall system supervision: wide range  v* Single point of failure

v" Require redundancy on critical devices

v' Lack of global information

v' Rely on accuracy of measurements (DBS,
PLC)

v' Voltage deviation (adaptive droop methods)

v' Potential stability issue (adaptive droop
methods)

v" Communication coupled system dynamics
v" High complexity for analytical performance
analysis

the power converter control is the fundamental key for integration!!
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Challenges

v The appearance of stability issues: careful tuning of parameters

v’ Increase in the number of converters

v' Complexity of converter control strategies raises:
v’ Coordination with the storage control
v’ Converters topologies

v Necessity to develop a sophisticated Energy Management System
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Hierarchical Control Strategy

v’ Decreasing bandwidth with increasing of control levels

v" Inner control loops as the basis

v DC bus voltage and power sharing control, e.g. droop method
v’ Secondary control for error cancellation

v Coordinated control of different energy resources
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Power Converter Primary Control

»Traditionally the Distributed Power Generation Systems (DPGS) are current controlled in grid-connected mode and
they deliver a pre-specified amount of active power into the distribution network.

=Differently in stand-alone operation mode, or forming a microgrid, the DPGS are voltage controlled and are
responsible for both voltage and power control, in this case the DPGS converters are grid-forming.

AC micm—grid AC micm—grid
bus bus
@ P i
R o ]
(a) (b) V74
GRID-FORMING GRID-FEEDING
It usually operates in islanded mode It cannot operate in island mode
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Simple Model of a Grid-Feeding Converter
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ap-frame
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Converter Current Control

PWM current control methods

T

ON/OFF controllers Separated PWM
linear non-linear
passivity fuzzy

/ \ Pl predictive resonant

hysteresis Delta optimized feedforward dead-beat
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Grid-Forming Converter: Droop Control

EZ0

S=P+jQ
Active power G} - :>
2
P= (% CoS ¢ Ve EV

> jcos@+73|n¢sm0 V4

 V is the amplitude of the converter output voltage;

Reactive power » E£is the amplitude of the voltage at the point of the connection with the grid;

2

Q =£ﬂcos¢—v—j3in ¢9+ﬂsin $Ccoso » @ is the converter voltage angle;
VA VA z

» Zand are the magnitude and the phase of the line impedance.

Assuming that the output impedance is purely inductive and the angle ® is small the amplitude and the
frequency of the control voltage can be expressed as it follows:

EV . EV EV E’ E
P=—-sing~— =——cos¢g—-—~—(V-E
o X / X ¢ I Q X / X X ( )
A A
. s e w" and V" are the rated frequency
fe3] w=m —mP
= and voltage;

e P/ and Q" are the set points for
active and reactive power;

e m, and n, are the proportional
droop coefficients.
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Grid-Forming Converter: Droop Control

In case of a low voltage smart grid the line resistance cannot be neglected.

v’

Active power Reactive power

Pzg(\/—E) I:> V=V —n(P-P) Q=%¢ I::}w:w*—m(Q—Q*)

@ Transformation matrix 7 ?

P- . sing —cosé || P
Q.| |cosé sing ||Q

<V

EV
S

(@) (b) (c)

Rosa A. Mastromauro

PAGE 18



Grid-Forming Converter: Droop Control
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Droop Control: Results

DC LINK
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Results: Normal Operation Mode
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Frequency [Hz]

Frequency [Hz]

Results: Short Duration Grid Interruption
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Results: Outage of an Inverter
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Results: Voltage Sags
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Experimental Setup

The laboratory setup:

A - two DC power supplies;

B1- filter 1 + current and voltage
acquisition boards (system 1);
B2 - filter 2 + current and voltage
acquisition boards (system 2);

C - two inverters;

D - load;

E - isolation transformer;

F - static transfer switch (STS);

G - two 1103 dSpace boards

26/05/2010

Rosa A. Mastromauro

PAGE 25



Experimental Results: Qutage of an Inverter
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Power-Converter-Based DC Multibus for DC Smart Grids

AC Grid
DC Multibus
( DCIAC Bidirectional ) Lg %
DC/DC Converter Converter
1 . A | —
Main components: DC Lokd || Vodu ] VA ﬂi}
* Distributed generation sources _1 —

) Energy Storage SyStemS DC/AC Bidirectional
e Critical and non-critical loads DC LOAD DC/DC Converter Converter

TR = thev- | | the w-
Vb o Vbe 2 _I phase | | phase
| cluster | | cluster

DCI/AC Bidirectional
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. - Y
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D l,
O n o
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Single-Star Bridge-Cells Modular
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Interface between DC Smart Grid and main grid :
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DC Multibus based on the Single-Star Bridge-Cells (SSBD) Modular Multilevel
Cascade Converter (MMCC)

AC Grid "
_f Advantages of SSBC MMCC
4@ « Modularity and reliability;
B oy  High power with high voltages;
g—  Multiple DC outputs;
S oy » Low harmonic distortion;
E_ Bridge Cell * Bi-directional;
* Low switching losses;
« Small input filters.

Drawbacks of the SSBC MMCC

 Large numbers of components;

 Control of V.

L - 9 levels Voltage
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Control of the single cell of the SSBC MMCC
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SSBC MMCC Voltage Balance Results
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Management of the DC Multibus Fed by the SSBC MMCC Converter and DC
Sources together
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Drawbacks to be solved:

«Circulating currents
eInstability
eOscillations

DC DROOP CONTROL

Rosa A. Mastromauro
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