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Power Converters for AC and DC electrical power 
systems: control and interconnection issues
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Renewable Energy Sources & DPGS

Source: Chapter 01 in Renewable energy devices and 
systems with simulations in MATLAB and ANSYS, 
Editors: F. Blaabjerg and D.M. Ionel, CRC Press LLC, 
2017

Distributed Power Generation Systems (DPGS) 

Grid-connected mode Islanding modes 

No interruption in the load power supply
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POWER-ELECTRONICS-BASED 
SMART GRIDS 
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A MICROGRID is an electrical system that includes multiple loads and distributed energy resources that can
be operated in parallel with main grid or as an electrical island.

In the Distributed Generation scenario, the MICROGRID concept has been introduced as a solution to provide
high power quality and to improve the reliability of the traditional electrical power system.

A MICROGRID with INTELLIGENT features is a SMART GRID …….

Microgrids & Smart Grids
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DC & AC Microgrids
Problems in AC Microgrids:
 Synchronization of distributed generators
 Inrush current (transformers, Induction motors, Induction generators)
 Three-Phase Unbalance (single-phase loads, single-phase generators such as PV)

Recent Trends
 Introduction of many Inverter loads (AC/DC and DC/AC conversions are included)
 Introduction of distributed generations with DC output (photovoltaic, fuel cell,variable

speed type wind turbine, microturbine, gas engine)
 Needs for higher quality power

DC Smart Grids Applications:
 -48 V telecom systems, DC-link for UPS 

systems
 DC microgrids/nanogrids
 DC distributed power systems (DPS)
 Isolated systems: avionic, automotive, 

marine…
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DC Smart Grids Advantages

- DC Smart Grids are a good solution for autonomous systems when trying to combine:
PV systems with batteries

- DC Smart Grids can naturally interface:
o DC sources: PV, fuel cells.
o DC storage: supercapacitors, batteries
o DC loads: LEDs, electronic loads

- DC Smart Grids are more efficient than AC Smart Grids ….. in general !

Power Stage of an AC Smart Grid Rosa A. Mastromauro
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DC Smart Grids Advantages

- Fluctuation of generated power of distributed generators and load power can be 
compensated in the DC line by using energy storage devices

- Loads are not affected by voltage sag, voltage swell, three-phase voltage unbalance, 
and voltage harmonics

- Power quality is not affected by inrush current, single-phase loads and single-phase 
generators

- Synchronization of distributed generators are not necessary.

Power Stage of an AC Smart Grid Rosa A. Mastromauro
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DPGS Control Features for AC and DC Power Systems

Complete control structure of a PV plant  for integration into the AC power System

- Some of these control functions can be avoided in case of DC Smart Grids !
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DC Smart Grids Voltage Levels

 400V: This voltage level has been used in dc datacenters. This is relatively high voltage
and hence highly effective grounding and protection techniques are required.

 325V: It is equal to the peak of the AC phase voltage. Standard single phase power
supplies with diode bridge input stage have DC-link voltage of 325 V. Hence, existing
supplies are compatible with this DC voltage level.

 230V: It has the same root mean square value as that of the existing AC system. Hence,
the resistive loads (mostly heating) rated to operate with the existing AC system need
not be modified, if this voltage level is used.

 120V: It is an intermediate level between very low voltage and the existing AC system
voltage.

 48V: It is used in the telecom sector, hence supporting devices for this voltage level are
available.
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DC Smart Grids Challenges

 Efficiency: System efficiency depends on the power conversion stages between
the sources and loads. As the power conversion stage and its efficiency depends
on voltage levels, system efficiency also depends on DC bus voltage level.

 Cost: The cost of the power converters topologies depends on the voltage levels.
Cabling size is decided by the current to be carried, which in turn depends on the
system power and voltage level. Typically, converter and cabling costs increase
with the reduction in voltage level. This limits the use of low DC voltage for high
power application.

 Safety: Very low voltage (less than 50V) is considered safe for humans up to 3
seconds of direct contact. However, even for this voltage range, grounding
practice is necessary for the protection of devices/equipments.

 Protections: circuit complexity (no zero-crossing detection);

 Unclear pathway for moving from AC-centric power distribution to DC-inclusive
distribution schemes.
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 The power converter is the fundamental interface between the DPGS and the power system and
the power converter control is the fundamental key for integration!!

Smart Grids Control Strategies 

Control
Technique Advantages Disadvantages

Centralized
 Easy implementation
 Overall system supervision: wide range 

of capabilities are possible

 Limited flexibility
 Single point of failure
 Require redundancy on critical devices

Decentralized
 Do not require digital communication
 Highly flexible and expandable
 Simplicity of control

 Lack of global information
 Rely on accuracy of measurements (DBS, 

PLC)
 Voltage deviation (adaptive droop methods)
 Potential stability issue (adaptive droop 

methods)

Distributed 
 Sparse communication
 Highly flexible
 Reconfigurable

 Communication coupled system dynamics
 High complexity for analytical performance 

analysis
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Challenges

 The appearance of stability issues: careful tuning of parameters

 Increase in the number of converters

 Complexity of converter control strategies raises: 
 Coordination with the storage control 
 Converters topologies 

 Necessity to develop a sophisticated Energy Management System
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Hierarchical Control Strategy

 Decreasing bandwidth with increasing of control levels

 Inner control loops as the basis

 DC bus voltage and power sharing control, e.g. droop method

 Secondary control for error cancellation

 Coordinated control of different energy resources

 Tertiary control for optimal operation STS1i
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Traditionally the Distributed Power Generation Systems (DPGS) are current controlled in grid-connected mode and
they deliver a pre-specified amount of active power into the distribution network.

Differently in stand-alone operation mode, or forming a microgrid, the DPGS are voltage controlled and are
responsible for both voltage and power control, in this case the DPGS converters are grid-forming.

GRID-FORMING GRID-FEEDING

It cannot operate in island modeIt usually operates in islanded mode

Power Converter Primary Control
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PWM current control methods

ON/OFF controllers Separated PWM

hysteresis Delta optimized

linear non-linear

fuzzypassivity

PI predictive resonant

dead-beatfeedforward

Converter Current Control
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• V is the amplitude of the converter output voltage;
• E is the amplitude of the voltage at the point of the connection with the grid;
• Φ is the converter voltage angle;
• Z and are the magnitude and the phase of the line impedance.

Active power 

Reactive power 
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Assuming that the output impedance is purely inductive and the angle Φ is small the amplitude and the
frequency of the control voltage can be expressed as it follows:

• ω* and V* are the rated frequency
and voltage;
• P* and Q* are the set points for
active and reactive power;
• mp and nq are the proportional
droop coefficients.
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Grid-Forming Converter: Droop Control
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In case of a low voltage smart grid the line resistance cannot be neglected. 
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Grid-Forming Converter: Droop Control

Rosa A. Mastromauro



PAGE 19

Power Control in Grid-Connected Operation 
Mode
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Grid-Forming Converter: Droop Control

Rosa A. Mastromauro



PAGE 20

Normal operation 
mode

Short duration 
interruption Outage of an inverter Voltage sag

Droop Control: Results
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Grid voltage and inverters output voltage Voltage amplitude and Frequency

Results: Normal Operation Mode

Active and reactive powers of inverters output current

Tested regards the grid-
connected operation
mode. With the droop
control, the inverters
can share power (active
and reactive power)
required by the load
without using a
communication system.
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Active and reactive power outputs of the DPGS system

Frequency of the converter Voltage of the converter

Results: Short Duration Grid Interruption

A short duration grid
interruption occurs at time
t=5s and the DPGS system
switches from grid-
connected to islanded
mode operation. At t=10s
the micro-grid switches
from islanded to grid-
connected mode.
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Active and reactive power

Frequency on common bus Voltage on common bus

Results: Outage of an Inverter

From t=5s to time t=10s
the inverter 2 is affected
by a disservice, while the
inverter 1 has to cope
with the total load power
demand
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Active and reactive power

Frequency on common bus
Voltage on common bus

Results: Voltage Sags

During voltage sag, the
inverters are able to share
active and reactive power
required by the load following
the references set by the droop
control algorithm.
Droop control maintains the
frequency constant on common
bus, but the voltage amplitude
decreases because references
in the droop control come from
the PLL.
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The laboratory setup: 
A - two DC power supplies;
B1- filter 1 + current and  voltage 
acquisition boards  (system 1);
B2 - filter 2 + current and voltage 
acquisition boards (system 2); 
C - two inverters; 
D - load; 
E - isolation transformer;
F - static transfer switch (STS); 
G - two 1103 dSpace boards

Experimental Setup

Rosa A. Mastromauro
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active and reactive power frequency

Experimental Results: Outage of an Inverter

transition from grid-connected to stand-alone operation

Inverters currents (CH3 and
CH4), grid-voltage (CH1) and
voltage at the common bus
(CH2) considering grid-connected
operation mode and inverter 1 is
affected by a disservice

currents
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Main components:
• Distributed generation sources
• Energy storage systems
• Critical and non-critical loads DC LOAD

The DC Multibus provides:
• Different DC voltage levels
• Redundancy

Power-Converter-Based DC Multibus for DC Smart Grids 

Interface between DC Smart Grid and main grid 

Single-Star Bridge-Cells Modular 
Multilevel Cascade Converter (SSBC 

MMCC)
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Advantages of SSBC MMCC
• Modularity and reliability; 
• High power with high voltages; 
• Multiple DC outputs; 
• Low harmonic distortion; 
• Bi-directional; 
• Low switching losses; 
• Small input filters.

Drawbacks of the SSBC MMCC
• Large numbers of components;

• Control of Vdc.

9 levels Voltage

Vout= Vcell1+Vcell2+Vcell3+Vcell4

DC Multibus based on the Single-Star Bridge-Cells (SSBD) Modular Multilevel 
Cascade Converter (MMCC)

Bridge Cell
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Control of the single cell of the SSBC MMCC 
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Modulating signals, m1 and m2, when : P1 = P2

Modulating signals, m1 and m2, when: P1  ≠ P2 (ΔP=30%)

Modulating signals, m1 and m2, when: P1  ≠ P2 (ΔP=50%)
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Drawbacks to be solved:
•Circulating currents
•Instability
•Oscillations

Management of the DC Multibus Fed by the SSBC MMCC Converter and DC 
Sources together 

DC DROOP CONTROL

Rosa A. Mastromauro
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